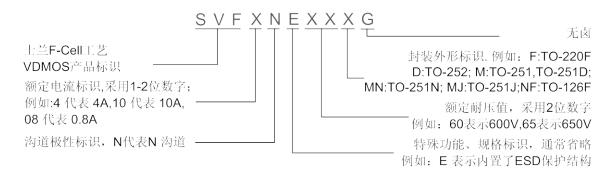


2A、700V N沟道增强型场效应管


描述

SVF2N70M/MJ/MNG/F/D/NF N沟道增强型高压功率 MOS 场效应晶体管采用士兰微电子的 F-CellTM平面高压 VDMOS 工艺技术制造。先进的工艺及条状的原胞设计结构使得该产品具有较低的导通电阻、优越的开关性能及很高的雪崩击穿耐量。


该产品可广泛应用于 AC-DC 开关电源, DC-DC 电源转换器, 高压 H 桥 PWM 马达驱动。

特点

- * 2A, 700V, $R_{DS(on)(\text{APM}(d))} = 5.0\Omega @V_{GS} = 10V$
- * 低栅极电荷量
- * 低反向传输电容
- * 开关速度快
- * 提升了 dv/dt 能力

命名规则

产品规格分类

产品名称	封装形式	打印名称	材料	包装形式
SVF2N70M	TO-251-3L	SVF2N70M	无铅	料管
SVF2N70M	TO-251D-3L	SVF2N70M	无铅	料管
SVF2N70MJ	TO-251J-3L	SVF2N70MJ	无铅	料管
SVF2N70MNG	TO-251N-3L	SVF2N70MNG	无卤	料管
SVF2N70F	TO-220F-3L	SVF2N70F	无铅	料管
SVF2N70D	TO-252-2L	SVF2N70D	无铅	料管
SVF2N70DTR	TO-252-2L	SVF2N70D	无铅	编带
SVF2N70NF	TO-126F-3L	SVF2N70NF	无铅	料管

杭州士兰微电子股份有限公司 Http://www.silan.com.cn 版本号: 1.5 **2012.10.17** 共12页 第1页

士兰微电子 SVF2N70M/MJ/MNG/F/D/NF 说明书

极限参数(除非特殊说明, T_C=25°C)

	符号	参数范围					
参数名称		SVF2N	SVF2N	SVF2N	SVF2N	SVF2N	单位
		70M/D	70MNG	70 M J	70F	70NF	
漏源电压	V_{DS}	700				V	
栅源电压	V_{GS}	±30				V	
T _C =25°C		2.0					
漏极电流 T _C =100°C	I _D	1.3					Α
漏极脉冲电流	I_{DM}	8.0				А	
耗散功率(T _C =25°C)	b率(T _C =25°C)		30	40	28	18	W
- 大于 25°C 每摄氏度减少	P _D	0.31	0.24	0.32	0.22	0.14	W/°C
单脉冲雪崩能量(注 1)	E _{AS}	118				mJ	
工作结温范围	T_J	-55∼+150				°C	
贮存温度范围	T_{stg}	-55∼ + 150				°C	

热阻特性

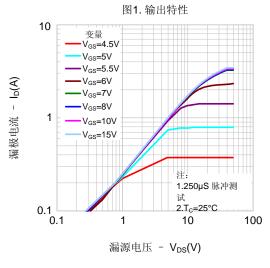
		参数范围					
参 数 名 称	符号	SVF2N	SVF2N	SVF2N	SVF2N	SVF2N	单位
		70M/D	70MNG	70MJ	70F	70NF	
芯片对管壳热阻	$R_{ heta JC}$	3.21	4.17	3.13	4.46	6.94	°C/W
芯片对环境的热阻	$R_{\theta JA}$	110	110	110	120	120	°C/W

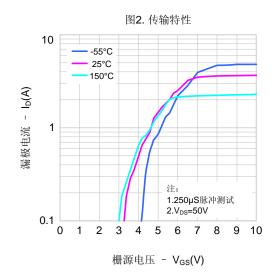
电性参数(除非特殊说明, T_C=25℃)

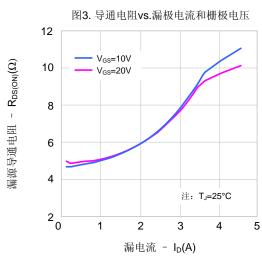
参数	符号	测试条件	最小值	典型值	最大值	单位
漏源击穿电压	B _{VDSS}	$V_{GS}=0V$, $I_D=250\mu A$	700			V
漏源漏电流	I _{DSS}	V _{DS} =700V, V _{GS} =0V			1.0	μΑ
栅源漏电流	I _{GSS}	$V_{GS}=\pm30V$, $V_{DS}=0V$			±100	nA
栅极开启电压	$V_{GS(th)}$	$V_{GS} = V_{DS}$, $I_D = 250 \mu A$	2.0		4.0	V
导通电阻	R _{DS(on)}	V _{GS} =10V, I _D =1.0A		5.0	6.5	Ω
输入电容	C _{iss}	\\\\ 05\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\		260.1		
输出电容	C _{oss}	$V_{DS}=25V$, $V_{GS}=0V$,		32.2		pF
反向传输电容	C_{rss}	f=1.0MHz		1.3		
开启延迟时间	t _{d(on)}	V _{DD} =350V, I _D =2.0A,		8.73		
开启上升时间	t _r	R _G =25Ω		22.27		
关断延迟时间	t _{d(off)}			12.53		ns
关断下降时间	t _f	(注 2,3)		21.07	-	
栅极电荷量	Q_g	V _{DS} =560V, I _D =2.0A,		5.96		
栅极-源极电荷量	Q_{gs}	V _{GS} =10V		1.77		nC
栅极-漏极电荷量	Q_gd	(注 2,3)		2.08		

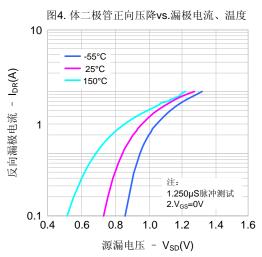
杭州士兰微电子股份有限公司 Http://www.silan.com.cn

版本号: 1.5 2012.10.17 共12页 第2页

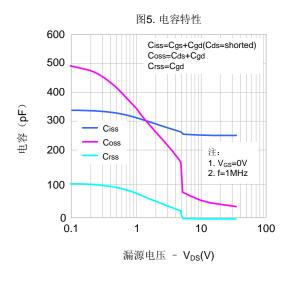

源-漏二极管特性参数

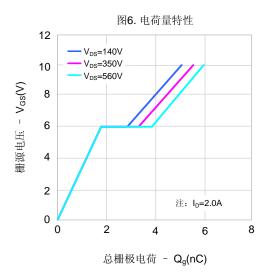

参数	符号	测试条件	最小值	典型值	最大值	单位
源极电流	Is	MOS 管中源极、漏极构成的	-		2.0	_
源极脉冲电流	I _{SM}	反偏 P-N 结			8.0	Α
源-漏二极管压降	V_{SD}	I _S =2.0A, V _{GS} =0V			1.4	V
反向恢复时间	T _{rr}	I _S =2.0A, V _{GS} =0V,		369.35		ns
反向恢复电荷	Q _{rr}	dI _F /dt=100A/μS		1.12		μC

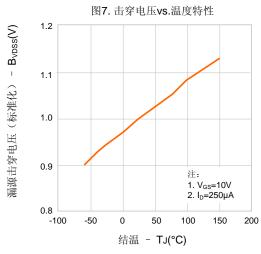

注:

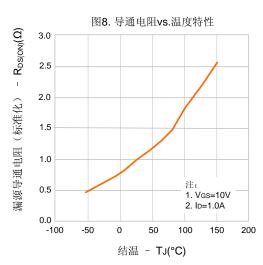

- 1. L=30mH, I_{AS} =2.58A, V_{DD} =95V, R_{G} =25 Ω ,开始温度 T_{J} =25 $^{\circ}$ C;
- 2. 脉冲测试: 脉冲宽度≤300µs, 占空比≤2%;
- 3. 基本上不受工作温度的影响。

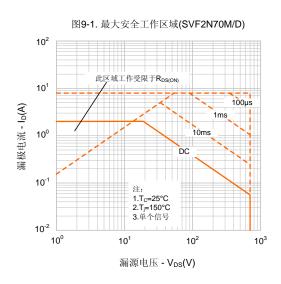
典型特性曲线

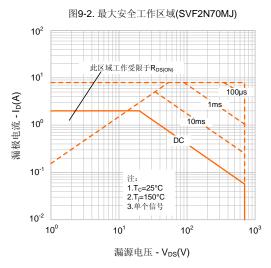


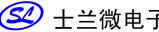

版本号: 1.5 2012.10.17

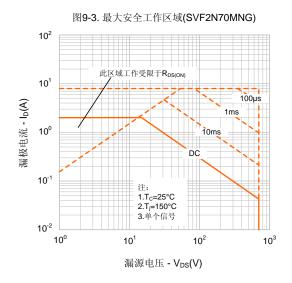


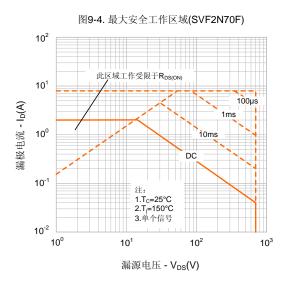

士兰微电子 SVF2N70M/MJ/MNG/F/D/NF 说明书

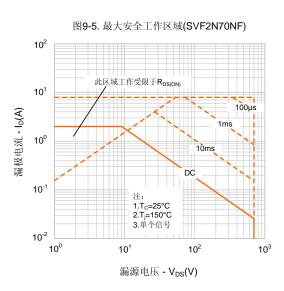

典型特性曲线 (续)

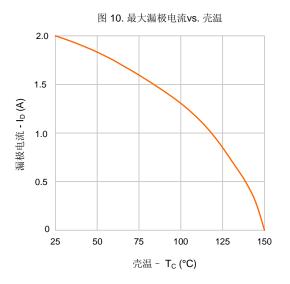


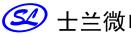


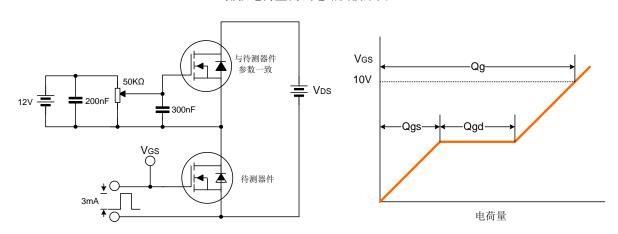


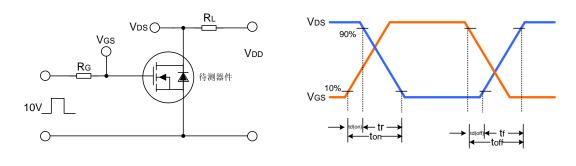



版本号: 1.5 2012.10.17 共12页 第4页

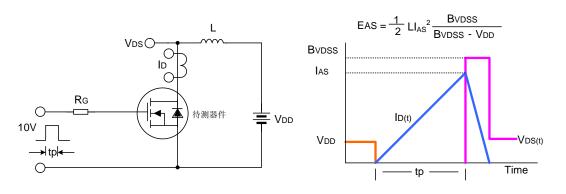



典型特性曲线 (续)

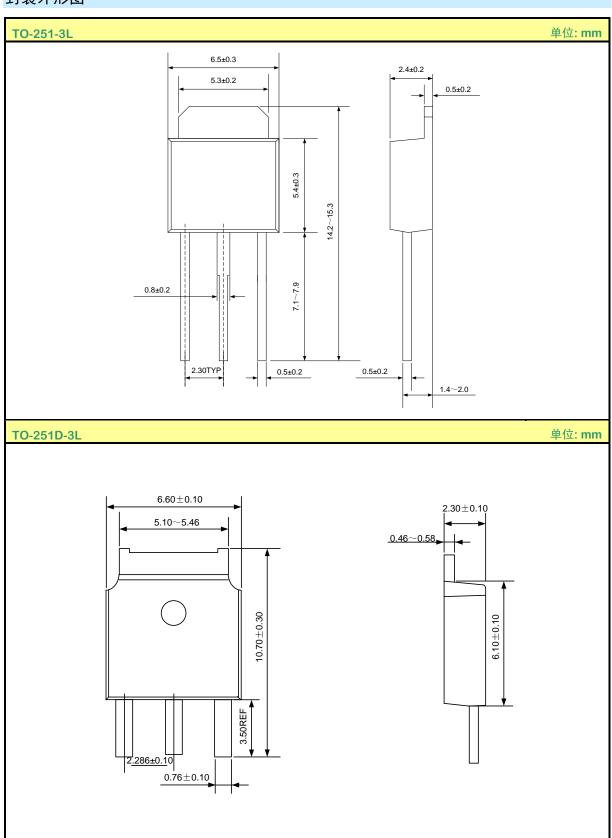


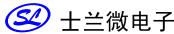


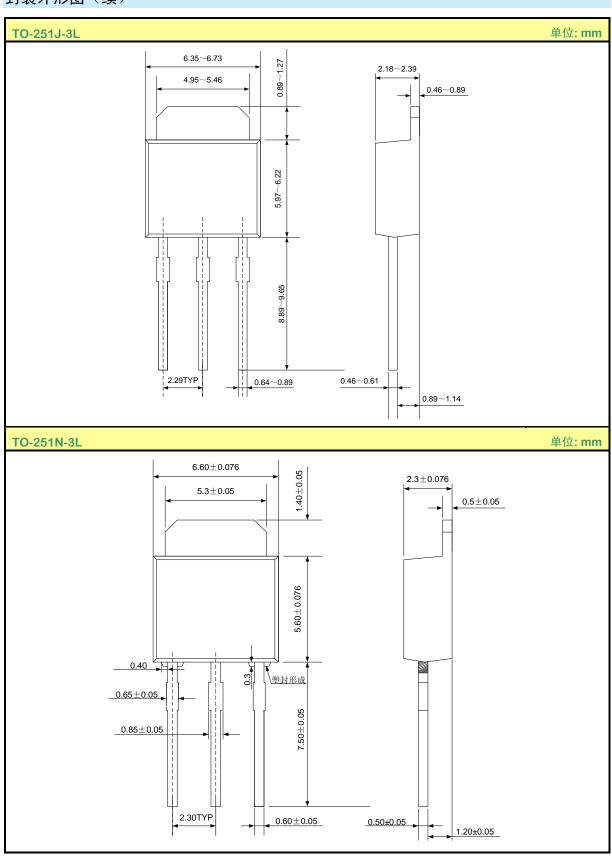
典型测试电路

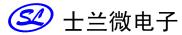

栅极电荷量测试电路及波形图

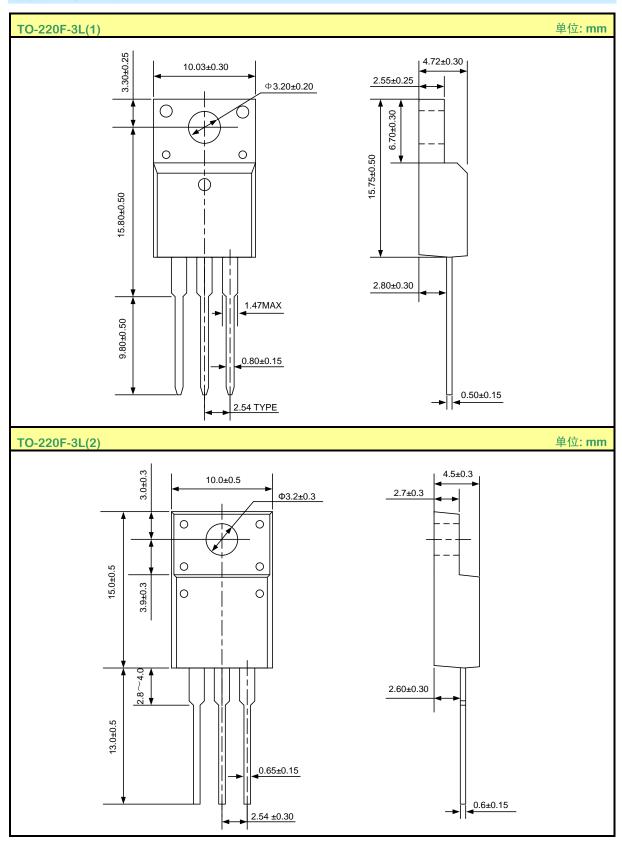
开关时间测试电路及波形图

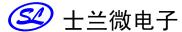


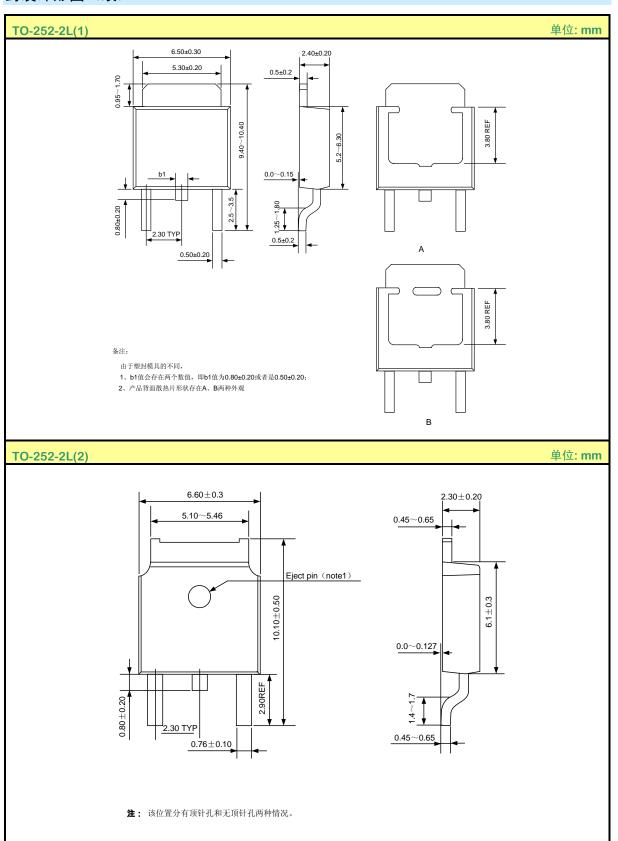

EAS测试电路及波形图

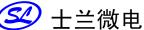


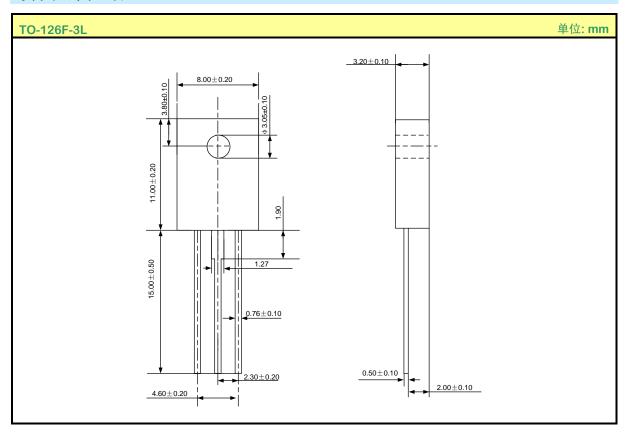



封装外形图

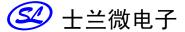








版本号: 1.5 2012.10.17 共12页 第10页


Http://www.silan.com.cn

声明:

- 士兰保留说明书的更改权, 恕不另行通知! 客户在下单前应获取最新版本资料, 并验证相关信息是否完 整和最新。
- 任何半导体产品特定条件下都有一定的失效或发生故障的可能,买方有责任在使用 Silan 产品进行系统 设计和整机制造时遵守安全标准并采取安全措施,以避免潜在失败风险可能造成人身伤害或财产损失情 况的发生!
- 产品提升永无止境, 我公司将竭诚为客户提供更优秀的产品!

士兰微电子 SVF2N70M/MJ/MNG/F/D/NF 说明书

附:

修改记录:

日期	版本号	描述	页码
2011.02.18	1.0	原版	
2011.08.31	1.1	修改"封装外形图"	
2012.01.13	1.2	增加TO-251N-3L封装	
2012.06.04	1.3	修改Trr和Qrr的值	
2012.07.17	1.4	增加TO-126F-3L封装	
2012.10.17	1.5	增加TO-251J-3L封装	